Nonlinear Subprofile Space for Radar Hrrp Recognition

نویسندگان

  • D. Zhou
  • X. Shen
  • Y. Liu
چکیده

In this paper, a novel approach, namely nonlinear subprofile space (NSS), is proposed for radar target recognition using high-resolution range profile (HRRP). First, the HRRP samples are mapped into a high-dimensional feature space using nonlinear mapping. Second, the nonlinear features, namely nonlinear subprofiles, are extracted by nonlinear discriminant analysis. Then, for each class, the nonlinear subprofile space is formed using all the training nonlinear subprofiles of class. Finally, the minimum hyperplane distance classifier (MHDC) is used for classification. The aim of NSS method is to represent the feature area of target using nonlinear subprofile space, and effectively measure the distance between the test HRRP and feature area via minimum hyperplane distance (MHD) metric. The experimental results of measured data show that the proposed method has better performance of recognition than KPCA and KFDA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Automatic Target Recognition via HRRP Sequence Based on Scatterer Matching

High resolution range profile (HRRP) plays an important role in wideband radar automatic target recognition (ATR). In order to alleviate the sensitivity to clutter and target aspect, employing a sequence of HRRP is a promising approach to enhance the ATR performance. In this paper, a novel HRRP sequence-matching method based on singular value decomposition (SVD) is proposed. First, the HRRP seq...

متن کامل

Radar HRRP Modeling using Dynamic System for Radar Target Recognition

High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. ...

متن کامل

An Adaptive Feature Learning Model for Sequential Radar High Resolution Range Profile Recognition

This paper proposes a new feature learning method for the recognition of radar high resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect angles are jointly modeled and discriminated by a single model named the discriminative infinite restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov model (HMM)-based recognition method...

متن کامل

Adaptive Angular-sector Segmentation Radar Target Recognition based on Grey System

The aspect sensitivity of high-resolution range profile (HRRP) leads to the anomalous change of the HRRP statistical characteristic, which is one of inextricable problems on the target recognition based on HRRP. Aiming at the HRRP statistical characteristic, an adaptive angular-sector segmentation method is proposed through based on the grey relational mode. Comparing to the equal interval angu...

متن کامل

Radar Hrrp Target Recognition Using Multi- Kfd-based Lda Algorithm

Linear double-layered feature extraction (DFE) technique has recently appeared in radar automatic target recognition (RATR). This paper develops this technique to a nonlinear field via parallelizing a series of kernel Fisher discriminant (KFD) units, and proposes a novel kernel-based DFE algorithm, namely, multi-KFD-based linear discriminant analysis (MKFD-LDA). In the proposed method, a multiK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012